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Abstract

In this paper, an approach is described for recognizing and
locating partially hidden objects in an image. The method is
based upon matching pairs of boundary segments of the tem-
plate of an object with pairs of boundary segments in the
image. Using a Bayesian based signal detection approach,
pairs of segments are selected from the template of the object
such that the probability of correctly identifying the object
given that the pair is matched in the image is close to one.
Assuming that models of all objects which might appear in the
scene (a reasonable assumption for industrial applications) are
known a priori, suitable pairs of segments can be determined a
priori. Preliminary investigation suggests that the technique is
robust and that subsecond recognrition time can be achieved.

INTRODUCTION

A problem of great practical interest in machine vision is the
recognition of objects that are partially hidden. For example, con-
sider assembling a kit from parts dumped on a table, or extracting a
part from a bin of parts. In both of these cases it is likely that some
of the objects will be partially hidden from the view of the camera
because others are lying on top of them. In this paper we will present
a method for recognizing objects that are partially hidden. The dis-
cussion will be limited to recognizing flat two dimensional untilted
objects. Each object will then have only two possible views, one for
each flat side.

The method uses overlapping boundary segments and requires
that all the segments of each view of all the objects that can occur in
a scene be known a priori. The method is particularly suitable for an
industrial environment where the objects and their geometry are
known beforehand. An off-line training procedure selects, using the a
priori information, configuration pairs of segments that can uniquelv
define the position and orientation (pose) of an object given the other
objects that can occur in an image. A configuration pair is simply a
pair of segments and their pose with respect to each other. Clearly,
a segment that occurs in a large number of the configuration pairs of
a particular object is more likely to be useful in recognizing that
object, assuming that partial occlusion occurs randomly. We adopt
the terminology of [TMV84] and refer to such segments as salient
segments. The degree of saliency of a segment s can be quantified
by counting the number of configuration pairs that s appears in.
The set of segments that appear together with # in configuration
pairs is termed the coset of #; the degree of saliency of s is the car-
dinality of coset(s). It is important to pote that the degree of
saliency of the segment of an object is dependent on the other
objects in the a priori set of objects which can occur in an image.

IThis work described in this paper was supported in part by Air Force Contract
No. F49620-82-C-0089 and Army Research Office Contract No. DAAG29-84-K-0070.

2The authors are with the Robot Systems Division, Center for Robotics and In-
tegrated Manufacturing, Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 43109, (313) 764-0203.

CH2152-7/85/0000/0048%$01.00 © 1985 |IEEE

48

The recognition procedure searches for a object in a image of
partially occluded objects by first trying to locate the most salient
segment of that object in the image. If the most salient segment is
found, configuration pairs containing it are sought. As soon as a con-
figuration pair is located the pose of the object is assumed to be com-
pletely recognized, since the training procedure produces only those
pairs that can uniquely identify an object. If the most salient seg-
ment cannot be found, or if none of the configuration pairs contain-
ing the segment can be found, the recognition procedure continues
with the next most salient segment.

Many of the concepts developed in this paper are based on ear-
lier work by the authors and others. A brief summary of some of
this work follows.

Underlying the segment matching that is required as part of
our overall recognition procedure is a generalization of the Hough
transform. Work on this transform goes back a number of years.
Duda and Hart [DuH72| used a version of the Hough transform to.
locate portions of the boundary of an object from edge points in an
image. In the Hough transform an image boundary is located by
constructing a parameterized version of the boundary and determin-
ing which parameters are most consistent with the image points.
The set of parameters that describe a boundary can be regarded as a
point in a multidimensional parameter space. For each image point
the locus of all the parameter points that correspond to the image
point (i.e., those parameters of boundaries that pass through the
image point) is recorded. This is repeated for all image points.
Parameter space is partitioned into discrete regions and a histogram
is constructed that counts the number of loci passing throngh each
region. The location of the peak in the histogram yields a region
whose associated parameter point is considered to correspond to the
boundary most consistent with the image. This work inspired consid-
erable subsequent work. One of the main themes of this later work
was to speed up the procedure and reduce the number of false peaks
that could occur in the histogram by reducing the number of loci
through the use of constraints (in the original form of the transform
every image point is assumed to belong to every possible loci that
can pass through it).

Ballard [Bal81] developed a restricted form of the generalized
Hough transform that can be used for recognizing partially hidden
objects. In the generalized Hough transform, a template of the
object is parameterized by its location and orientation. A Hough
approach is then used to determine these parameters. The general-
ized Hough has been shown to be an efficient form of template
matching. Ballard restricted the generalized Hough approach by his-
tograming only those parameters which allow the template to pass
through the image point with the same slope as the image point.
This work represented a significant improvement on earlier Hough
transform based techniques. However, incorrect determination of the
location and orientation of an object still occurs when the degree of
acclusion is high [TMV84].

Perkins [Per78] developed a method for hidden part recognition
that sought matches for straight line and circular arc segments that
he referred to as ‘‘concurves.”” The matching was done in the slope
angle-arclength representation of the boundaries. (The slope angle-
arclength representation is discussed in {Bal82] and in the section on
matching.) The concurves were determined from templates of the
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objects during training. This approach allowed objects to be located
that were partially hidden provided the degree of occlusion was not
high. A high degree of occlusion hinders concurve matching, since
concurves are generally large segments of the boundary.

Bolles and Cain [BoC82] developed an apvroach for hidden
object recognition referred to as ‘local feature focus.”” During train-
ing a set of easily identifiable features, referred to as ‘‘focus
features,” were located in an object. A list of neighboring features
which distinguish a focus feature from other features was compiled
for each focus feature. During run-time a set of correspondences was
established between image features and object features in the neigh-
borhood of a focus feature. A graph was formed with the set of
correspondences as nodes and the consistencies between correspon-
dences as edges. A graph matching technique, the maximal clique
algorithm, was used to locate the largest cluster of mutually con-
sistent correspondences of the object features to the image features.
Once a focus feature was located the orientation and location of the
object could be determined. As noted in |BoC82] the inherent weak-
ness of this approach is its reliance on detecting local neighborhoods
of features; the local neighborhoods must be non-occluded to be use-
ful in recognition. Our work extends this approach by relying on
configurations of features that are more general than local neighbor-
hoods of focus features, moreover we avoid the need for consistency
checking.

The approach presented in [Seg83] matched extrema in curva-
ture in the boundary of the image to extrema in the boundaries of
templates of the objects. The approach works with global informa-
tion in the following sense. A global orientation of the objoct was
first determined by histograming the difference in orientation of each
extrema in the image boundary with respect similar extrema in the
template boundary, then a global translation along the z axis was
determine by histograming differences in the z location of extrema
in the image with respect to similar extrema in the template, and
finally a global y location was determined in a similar fashion to the
z location. The method achieved significant speed at the expense of
acrnracy. If similar objects or objects having similar extrema in dif-
ferent configurations appear in the image, the technique breaks
down. Accurately determining the second derivative of the boundarv
to identify extrema is also a source of error.

The approach presented in [ABB84| approximated the boun-
dary of an object by polygons. A linear segment taken from an
approximation of the object is matched to a linear segment generated
from an approximation of the image boundary. In order to reduce the
number of such matches ‘‘preferred’’ segments were chosen that
would occur with low frequency in the image. These preferred seg-
ments were generally those of longer length. If a match occurred, a
hypothesis was generated for the possible location of the object from
2 comparison of the difference in pose of the object and image seg-
ments. Once a match between segments was found, neighboring seg-
ments of the object were compared to neighboring segments of the
image to determined consistency. If they were consistent, a Kalman
filtering technique was used to update the estimated pose of the
object from the information gathered from the comparison of the
neighboring segments. This technique combines good accuracy with
speed, however, two drawbacks are its reliance on the polygon
approximation and the use of preferred segments. if an image boun-
dary is noisy, the polygon derived from it may differ significantly
from that derived from the objects template. If the preferred seg-
ments are occluded, which is highly likely because they were chosen
as the longest segments, the number of matches that must be per-
form grows rapidly.

Turney et al [TMV83], [TMV84] matched fixed length template
contour segments to image boundary segments of the same length in
a space where the slope angle of a contour is parameterized by its
arclength. Templates segments were weighted according to their
“saliency.” The algorithm was able to recognize objects even when
they were heavily occluded, but required a large amount of off-line
computation.

The work presented in [BhF84] used a two stage hierarchical
stochastic labeling method for matching a object templates to the
image boundary. They approximated the template and the image
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boundary by polygons. Associated with each image polygon segment
were two probability vectors: one vector whose elements were the
probabilities that the segment could be labeled as each of the seg-
ments of the template, and a second vector whose elements
represented the compatibility of the neighbors of the image segment
with the neighbors of each of the template segments. A two stage
optimization technique was used to maximize a global criterion which
maximized consistency while minimizing ambiguity. The algorithm
is computationally intensive.

In [BoC82), [TMV83), and |TMV84] emphasis was placed on the
context in which an object is found. Bolles and Cain chose local
features which were unique to an object and its pose to disambiguate
the object from other objects and other poses of the same object.
Turney et al used extended features, i.e., the boundary segments of
the object, to provide unique identification of the object of interest.
In industrial applications one generally knows the number and exact
shape of the objects that are to appear in a scene, and it is advanta-
geous to use this information to distinguish objects. This paper
presents preliminary results from an algorithm that also uses this
contextual information. The next section explains the hidden object
reengnition method in term of signal detection theorv. The
subsequent sections discuss matching template segments of objects to
'nage segments, training and recognition.

OBJECT RECOGNITION AS SIGNAL DETECTION

In this section we present a Bayesian based signal detection
view of the recognition procedure, based or configuration pairs, that
was outlined in the Introduction. Assume that the boundary of an
object, object 1, appears in a scene with its location and orientation
about an origin as shown in Fig. 1a. In the terms of signal detection
theory this boundary represents a signal, Sl(zo,yo,qﬁo), derived from
object 1 when the object is placed at location {zg,y,) with orienta-
tion ¢,. This signal is transmitted to the camera and forms part of
the image. Any rotation or shift of this boundary represents z dif-
ferent signal S'(z,y,4), where 2, y, and & represent a different
pose from z4, ¥y, and @g. The rotations and shifts of other boun-
daries of other objects that can appear in the image correspond to
different signals, $*(z,y ,¢), where ¢ 71,

Assume that R, shown in Fig. 1b, represents two boundary
segments that have been extracted from ap image. Treating R as a
received signal we seek the probability that it identifies S(z o,y4,80)
as the signal sent, ie., Pr [ SY(zq,yq,d0) sent | R received ).
This can be determined from

Pr [5’(20,y0,¢0) | R ]=

Pr[R | Sl(loyym%) |Pr { SI(ZO)ymd’o”
PriRr]

(1)

R can be produced in many ways. In particular, R can be produced
by an accidental alignment of segments of different objects (see Fig.
2). In this paper the possibility of accidental alignment is ignored,

then

PRI~ S PR | S (a0 d) 1P (8w )]
1,2y,

(@

where S'(z,y,8), for all {, 2, y and ¢, represents all the possible
signals that can be sent, i.e., all the boundaries of all the segments in
all poses. Assume that R consists of two segments of fixed arclength,
ag. Call these r and r; (see Fig. 1b), then (1) can be rewritten as

PT [SI(ZOyy0:¢O) | R }%
Pr[riry | SUz0,90,%0) 1Pr [ SHz0,90.80) ]

_Z¢Pr [rire | S'z,u.0))Pr [ 5'(2,9,8)]
I,Z,y,

Assume that all signals have equal a priori probability. Then (3)
becomes

(3)




Prryry | Sl(zofflo’%)]
S Prinn | Seye)] W

5,2,4.¢

Pr [ SYaoyeto) | R )=

Let 8} represent a segment of S*(2,y,4) of arclength ag, and let
o'(z ,y ,4) represent the set of all configuration pairs (ordered pairs)
of segments, <s},8{/>, that can be produced from $'(z,y,4).
The probability that <.s;1 ,.3;2 > € o'(z,y,0) is received as the
pair of segments <r;,r,> is the probability that noise resulting
from sampling and quantization distorts a,-’l and 3,-'2 into rqy and 1,
respectively. Let 6 be a metric which measures the “distance’
between configuration pairs of segments. We approximate the proba-
bility Pr [ rir, | $'{z,y,6)] by the value 1 if there exists a con-
figuration pair of segments, <s]»'x,a]'2 > € o'(a,y,¢), such that

Upon reception of R, it would be possible to estimate the the
probability that S{(zq,¥,6,) Was sent during run-time. However,
given the large number of possible signals, this would take a signifi-
cant amount of computation. Instead, we adopt a simpler but less
accurate approach which allows the bulk of the computation to be
performed in an off-line training phase.

In order to eliminate run-time calculations it is necessary to
eliminate the dependence of Pr [ $Yz4,y0,60) | R ] on the
received signal R . From our approximation the numerator of (5) is
zero unless §(<<s; ,3;, >,<r,ry>) < d;. Terms containing the
pair \<"J!,1 18/, > in the denominator will be zero unless
H<sj 18/, >,<ryry>) < do Thus, it Pr[ryry | of of |
is to contribute to the denominator, the largest distance that
<s} ,8/, > can be from <s;) ,8,} > is 2d,. We will include only

T

Figure 1. Signal sent and signal received.

-~
\

Figure 2. Accidental alignment.

¢5(<.s‘,-'-1,a‘,-"2 >, <ry,ry>) < dg (dy is a fixed threshold distance),
and by O otherwise. Further assume that the reception of <r,r,>
depends only on the configuration pair <sf 18/, >. Then (4)
becomes

Pririry | .;,-11 a,»lzl

Y Priryry | ’;1 e;’e]
1,599

Pr [ SYzo,y00) | R | = {5)
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terms in the denominator that have configuration pairs within 2d of
<’)"1 ,.9;2 >, and set their values to 1. This approximation is made,
noting that its effect is to sometimes increase the value of the
denominator above the value that would be estimated at run-time.
This simply lowers the estimate of the probability to a more pes-
simistic value. In practice it has been found to work well. With this
approximation the denominator no longer depends upon R. Rather it
depends upon s,rll and 31-12, which in turn depend upon zy, yo, and

$o. Denote this approximate denominator by D |} (2 0,y4,8,)-



With these approximations D [ (zq,¥0,60) can be calculated
off-line, and the probability Pr [ S'(zg,40,60) | R | can be
estimated during run-time by

Pr [SYzoy080) | R = <rpry> ]~ (6)

1
D112 {(20,90:%0)

In  accordance with our approximation the
Prir,ry| .s,ll 31‘2 ] takes on the value 1 in (6).

numerator,

Since the calculation of D 1]2 (z ,y,4) depends only upon a rela-
tive distance metric for pairs of objects on the same object,
D L (z,y,8) is independent of the pose of the object. Therefore, in
the following, the notation will reflect this and D}, {2,y ,¢) will be
shortened to D |} .

The counting method of determining D}, for all ¢ is discussed
in the section on training.

This Bayesian approach of estimating whether or not a signal
has been sent given the reception of a pair of segments is used

together with the matching approach to locate partially hidden
objects. Matching is discussed in the next section.

MATCHING SEGMENTS

A critical phase of the procedure for locating an object in a
scene of partially hidden objects involves matching segments from
the template of the object to be located to segments in the image of
the scene. The approach used in this work has been discussed in
detail in [TMV83] and [TMV84], and is summarized here.

The template and image boundaries are represented in two
spaces, in normal cartesian space and in slope angle-arclength space,
or 8-a space (see Fig. 3). The template and image boundaries in
both #-a space and cartesian space are partitioned into segments of
fixed arclength a .

Matching is performed in §-a space since it 1s more efficient
than matching in cartesian space. Rotations in cartesian space
become offsets in §—a space.

During matching a #—a representation of the template segment
(shown with a heavy line in Fig. 4) is moved along the s axis so that
its center is aligned with the center of the image segment to which it
is to be compared. The template segment is then shifted in the &
direction so that the mean @ value of the template segment has the
same mean @ value as the image segment. This 8 shift (see Fig. 4)
measures the average slope angle difference between the template
and image segments and will be referred to as the ‘‘angle of match.”
The difference in 8 is found between corresponding points of the
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Figure 3. Cartesian and f-a representation of an object.

30604 O
mlAN
U
180 4 2
aNANENE
00 - J U o
0 L L] 1] T T 1
0 55 110 165 220 275 330

8 — arclength in pixels
Figure 4. Matching in #-a space.
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template and image segment. The inverse of sum of the squares of
these differences is used to measure the similarity of the two seg-
ments. If they are similar, as determined by a function of the thres-
hold dg, they are assumed to match.

If the template and image segments match in -4 space, the
match is recorded as follows. In cartesian space a vector from the
center of the template segment to the template centroid is deter-
mined. This vector is is rotated by the ‘“angle of match” and
translated so that its tail is centered at the same location as the
center of the image segment (see Fig. 5a). The location of the head
of this vector represents a potential location of the centroid of the
template in the image. Each pixel location in the image has an asso-
ciated list. If the head of the vector falls on a particular pixel, a
record containing the identity of the template segment and the angle
of match is stored in the list at that pixel location (see Fig. 5b).

of the next object, generating new lists of match records. These lists
are again analyzed, possibly resulting in D112 being further incre-
mented. All other objects are matched and all possible contributions
to D5 are counted.

In our preliminary implementation only configuration pairs
with denpominators equal to 1 were output in a table as part of the
training phase. The table is termed the training table and is indexed
by the subscripts of the configuration pair. Entries in the training
table are considered to be the configuration pairs that can uniquely
determine the pose of their associated object. The saliency of each
segment can be determined from the table. It is the cardinality of
the coset of each distinct segment that occurs in any of the confi-
guration pairs in the table.

(a)

Figure 5. Storing a record of the match.

TRAINING

The denominators for the conditional probabilities of an object
are trained off-line. The template of the object to be trained is
matched to templates of all of the objects {including itself) that can
appear in the image. From this matching information one can deter-
mine the denominators of the conditional probabilities.

The object whose conditional probabilities are to be determined
is termed the training object. As before let D, denote the denomi-
nator term for the conditional probability when <ajll "i; > form

the configuration pair. The calculation proceeds as follows. The seg-
ments of the template of the training cbject are matched to the seg-
ments of the template of one of the objects. After matching, the list
of records at each pixel location is examined. If the list at a pixel
location or the list of any nearby pixel contains a record of a match
by segment s, and a record of a match by ailz at approximately
the same angle of match, then D, is incremented by 1. After all
lists generated for this match have been examined they are disposed
of and the template of the training object is matched to the template
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LOCATING PARTIALLY HIDDEN OBJECTS

When locating an object, for example object 1, a segment, a,-l‘ s

of the template of the object is matched to the segments of the boun-
daries in the image using the approach discussed previously. The
most salient segments are matched first according to the strategy
outlined in the Introduction. When a template segment of the object
matches a image segment, a record of the match is stored in a list
associated with a pixel at the location of a possible centroid of the
template. Then the list at that pixel and of all neighboring pixels are
examined to see if there exists any previous record of a match with
another template segment, say aj; , at the same match angle.

If such a record exits, the training table is examined using j,
and j, as indices to find if this configuration pair is present. If this
is the case then object 1 has been located.



REsULTS

Fig. 6 shows the boundaries of the set of objects that were used

durmg training in our experiments. Fig. 7 shows an example of the
conditional probability,

Pr [S (zg,¥0:00) | R = <ry,r;> ). The bullet indicates the
center of segment 3; . A vertical line is drawn from each possible
center of a]-12 The length of the line is proportional to the joint con-
ditional probability Pr [ S (zoWedy) | B = <ry,ro> ] that
one would obtain if s j, were centered about each of these possible

locations.

Figure 8 illustrates the recognition of two objects from a pile of
parts. Preliminary estimates indicate subsecond recognition times on

an Apollo 660 workstation.

SUMMARY

In this paper it has been shown that a Bayesian approach,
together with template segment matching in §—a space can be used
as an effective approach to locate partially hidden objects. A key
assumption was that the received pair of segments, <r,,r,> were
not an accideatally alignment of two segments each from a different
object, but were received from a single object. In a real industrial
scene, particularly a bin of parts situation where there are many
copies of the same part, this assumption is likely to be violated. In
these cases some configurations may require more than a pair of seg-

ments.
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Figure 6. Training set.
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Figure 7. Joint conditional probability.
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