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Abstract 

In this   paper ,   an  approach is described  for  recognizing  and 
locating  partially hidden objects in an image. The method is 
based  upon  matching  pairs of boundary  segments  of  th-  tem- 
plate  of an  object  with  pairs of boundary  segments   in   the 
image.  Using a Bayesian  based  signal  detection  approach, 
pairs of segments  are  selected  from  the  template of the   object  
such   t ha t   t he   p robab i l i t y  of correctly  identifying  t.he  object 
g iven   tha t   the   pa i r  is matched  in  the image is close to one. 
Assuming  that   models  of all   objects  which  might  appear  in  the 
scene (a reasonable  assumption  for  industrial  applications)  are 
known a priori,  suitable  pairs of segments   can  be  determined a 
priori.  Preliminary  investigation  suggests that the  technique is  
robust  and  that   subsecond  recognition time can  be  achieved. 

INTRODUCTION 

A problem of great  practical  interest in machine  vision is the 
recognition of objects  that  are  partially  hidden.  For  example, con- 
sider  assembling a kit  from  parts  dumped on a  table,  or  extracting a 
part from  a bin of parts. In both of these cases it is likely that some 
of  the  objects will  be partially hidden  from the view of the  camera 
because others  are  lying on top of them. In this  paper we will  present 
a  method  for  recognizing  objects that  are partially  hidden. The dis- 
cussion  will be limited to recognizing flat  two  dimensional  untilted 
objects.  Each  object will then  have only two possible  views,  one  for 
each  flat  side. 

The method  uses  overlapping  boundary  segments  and  requires 
that  all  the  segments of each  view of all the  objects  that  can  occur in 
a  scene  be  known  a  priori. The method is particularly  suitable for an 
industrial  environment  where  the  objects  and  their geometry  are 
known  beforehand, An off-line training  procedure  selects, using the a 
priori  information,  configuration  pairs of segments that  can uniquelv 
define  the position  and orientation (pose) of an  object given the  other 
objects  that  can  occur  in  an image. A configuration  pair  is  simply  a 
pair  of  segments  and  their  pose  with  respect to each  other.  Clearly. 
a  segment that occurs  in  a  large  number of the configuration  pairs of 
a  particular  object is more  likely to  be  useful  in  recognizing that 
object,  assuming  that  partial occlusion  occurs  randomly. We  adopt 
the  terminology of  ITMV841 and  refer to such segments as # d e n t  
segments. The degree of saliency or a segment 8 can  be  quantified 
by counting  the  number of configuration  pairs that  8 appears in. 
The  set of segments that  appear  together  with 8 in configuration 
pairs is termed the coset of 8 ; the  degree of saliency of 8 is the  car- 
dinality of coset(8 ). It  is  important  to  gote  that  the degree of 
saliency of the  segment of an  object  is  dependent on the  other 
objects in the a  priori set of objects which can  occur in an image 
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The recognition  procedure  searches for a  object in  a  image of 
partially  occluded  objects by first  trying to locate  the  most  salient 
segment of that  object in the image. If the  most  salient  segment is 
found,  configuration  pairs  containing  it  are  sought. As soon as a con- 
figuration  pair is located the pose of the  object is assumed to be com- 
pletely  recognized,  since the  training  procedure  produces only  those 
pairs that  can uniquely  identify an  object. If the most  salient seg- 
ment  cannot be found, or if none of the  configuration  pairs  contain- 
ing the segment  can be  found, the recognition  procedure  continues 
with  the  next  most  salient  segment. 

Many of the  concepts developed in this  paper  are based  on  ear- 
lier  work by the  authors and  others. A brief summary of some of 
this work follows. 

Underlying  the  segment  matching that  is required as part of 
our overall  recognition  procedure is a  generalization of the Hough 
transform. Work  on this  transform goes  back  a number of years. 
Duda and Hart [DuH72] used  a  version of the  Hough  transform to 
locate  portions of the  boundary of  an object  from  edge  points in an 
image. In the Hough  t.ransform an  image  boundary is located by 
constructing  a  parameterized version of the boundary  and  determin- 
ing  which parameters  are  most  consistent  with  the  image  points. 
The  set of parameters  that describe  a  boundary  can  be  regarded as a 
point  in  a  multidimensional  parameter  space.  For  each  image  point 
the locus of all the  parameter  points  that  correspond to  the image 
point (i.e., those  parameters of boundaries that  pass  through  the 
image  point) is recorded.  This  is  repeated for  all  image  points. 
Parameter  space is partitioned  into  discrete regions  and  a  histogram 
is constructed  that  counts  the  number of loci  passing  through  each 
region. The location of the peak in the  histogram  yields  a region 
whose  associated parameter  point  is considered to correspond to  the 
boundary  most  consistent  with the image. This work  inspired  consid- 
erable  subsequent  work.  One of the main  themes of this  later work 
was to speed  up the  procedure  and  reduce  the  number of false  peaks 
that could  occur  in the histogram by reducing  the  number of loci 
through  the use of constraints (in the  original form of the  transform 
every  image  point is assumed to belong to every  possible  loci that 
can  pass  through  it). 

Ballard [Ba181] developed a restricted  form of the generalized 
Hough  transform that can be  used for  recognizing  partially  hidden 
objects. In the generalized  Hough transform,  a  templatr of the 
object is parameterized by its  location  and  orientation. A Hough 
approach is then used to determine  these  parameters.  The general- 
ized  Hough  has  been  shown to be an efficient form of template 
matching.  Ballard  restricted the generalized  Hough  approach  by his- 
tograming  only  those  parameters which  allow the  template  to pass 
through  the  image  point  with  the  same  slope as the  image  point. 
This work  represented  a  significant  improvement on  earlier  Hough 
transform  based  techniques.  However,  incorrect  determination of the 
location  and  orientation of an  object  still  occurs when the  degree of 
occlusion is high (TMV841. 

Perkins [Per781  developed  a  method  for  hidden  part  recognition 
that  sought  matches for straight  line  and  circular  arc  segments  that 
he  referred to as “coneurves.” The  matching was  done  in the slope 
angle-arclength  representation of the boundaries. (The slope angle  
arclength  representation is discussed  in [Ba18!2] and in the section on 
matching.)  The  concurves  were  determined from templates of the 
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objects  during  training.  This  approach allowed objects  to be locatea 
that were partially hidden  provided the  degree of occlusion  was not 
high. A high degree of occlusion hinders  concurve  matching, since 
concurves  are generally  large  segments of the  boundary. 

Bolles and  Cain [BoC82]  developed an  approach for hidden 

ing a set of easily identifiable  features, referred to  as “focus 
object recognition  referred to as “local feature focus.”  During train- 

features,” were  located  in an object. A list of neighboring features 
which distinguish  a focus feature from other  features  was compiled 
for each focus feature.  During  run-time a set of correspondences was 
established between  image features  and  object  features in the neigh- 
borhood of a focus feature. A graph was  formed with  the  set of 
correspondences  as nodes and  the consistencies  between  correspon- 
dences as  edges. A graph  matching  technique,  the  maximal clique 
algorithm, was used to  locate  the  largest  cluster of mutually con- 
sistent  correspondences of the  object  features  to  the  image  features. 
Once  a  focus  feature was located  the  orientation  and location of the 
object could be  determined. As noted in IBoC821 the  inherent weak- 
ness of this  approach is its  reliance on detecting local  neighborhoods 
of features;  the local  neighborhoods must  be non-occluded to be  use- 
ful in recognition. Our work extends  this  approach by relying  on 
configurations of features  that  are  more  general  than local neighbor- 
hoods of focus features, moreover we avoid the need for consistency 
checking. 

The  approach  presented  in ISeg831 matched  extrema  in  curva- 
ture in  6he boundary of the image to  extrema in the  boundaries of 
templates of the  objects.  The  approach  works  with global  informa- 
tion in the following  sense. A global orientat,ion of the   ob jx t  was 
first  determined by histograming  the difference  in orientation of each 
extrema in the image  boundary  with  respect  similar  extrema  in  the 
template  boundary,  then a global translation along the z axis was 
determine by histograming differences in the z location of extrema 
in the image with  respect  to similar extrema in the  template,  and 
finally a global y location was  determined  in  a  similar  fashion to  the 
z location.  The  method achieved significant speed at  the expense of 
3crwary. If similar  objects or objects having  similar extrema in dif- 
ferent  configurations  appear in the  image,  the  technique break. 
down i\ccurately  determining  the second derivative of the  houndan. 
to  identify  extrema is also a  source of error. 

The  approach  presented in (AI3B841 approximated  the  boun- 
dary of an  object by  polygons. A linear  segment  taken  from an 
approximation of the  object is matched  to a linear  segment  generated 
from  an  approximation of the image  boundary. In order to  reduce  the 
number of such  matches  “preferred”  segments  were  chosen that 
would  occur with low frequency in the image. These preferred seg- 

hypothesis was generated for the possible location of the  object  from 
ments were  generally those of longer length. If a match  occurred, a 

a comparison of the ditfeerence in pose a( the  object  and  image seg- 
ments.  Once a match between  segments was  found, neighboring 8eg- 
ments of the  object were  compared to neighboring  segments of the 
image to  determined consistency. If they were consistent,  a  Kalman 
filtering  technique  was used to  update  the  estimated pose of the 
object  from  the  information  gathered  from  the  comparison of the 
neighboring  segments.  This  technique  combines good accuracy  with 
speed, however,  two drawbacks  are  its reliance  on the polygon 
approximation  and the use of preferred  segments. If an  image  boun- 
dary is noisy, the polygon derived  from  it  may differ  significantly 
from that  derived from the  objects  template. If the preferred seg- 
ments  are  occluded, which is highly likely because  they were chosen 
as the longest segments,  the  number of matches that  must be  per- 
form  grows rapidly. 

Turney  et  al [TMV83], jTMV84] matched fixed length  template 
contour  segments  to  image  boundary  segments of the  same  length in 
a  space  where  the slope angle of a  contour is parameterized by i t s  
arclength.  Templates  segments  were weighted  according to  their 
“saliency.” The  algorithm  was  able  to recognize objects even  when 
they were heavily occluded,  but required a large  amount of  off-line 
computation. 

The work presented in (BhF841 used a two  stage  hierarchical 
stochastic  labeling  method for matching a object  templates to  the 
image  boundary. They approximated the  template and the image 

boundary by polygons.  Associated with each  image polygon segment 
were  two probability vectors: one  vector whose elements were the 
probabilities  that  the  segment could be labeled as each of the seg- 
ments of the  template,  and  a second vector whose elements 
represented  the  compatibility of the neighbors of the image  segment 
with  the  neighbors of each of the  template  segments. A two  stage 
optimization  technique was used to maximize a global criterion which 
maximized consistency while  minimizing ambiguity.  The  algorithm 
is computationally  intensive. 

In IBoC82], ITMV831, and ITMV84) emphasis  was  placed  on  the 
context in  which an  object is found. Bolles and  Cain chose local 
features which  were unique  to  an  object  and its pose to  disambiguate 
the  object from other  objects  and  other poses of the  same  object. 
Turney  et a1 used extended  features,  i.e.,  the  boundary  segments of 
the  object, to provide  unique  identification of the  object of interest. 
In industrial  applications  one generally  knows the number  and  exact 
shape of the  objects  that  are  to  appear in a  scene,  and  it is advanta- 
geous to use this  information to  distinguish objects.  This  paper 
presents  preliminary  results  from an algorithm  that also uses this 
contextual  information.  The next  section explains  the hidden object 
rnc-nnition method in term of signal detection  theorv.  The 
$uhsequent  sections discuss  matching  template  segments of objects  to 
3.nage segments,  training  and recognition. 

OBJECT  RECOGNITION AS SIGNAL DETECTION 

In this section we present a Bayesian  based  signal detection 
view of the recognition procedure, based on  configuration  pairs,  that 
was  outlined in the  Introduction. Assume that the boundary of an 
object,  object 1,  appears in a scene with  its  location  and  orientation 
about  an origin as shown in Fig. la.  In the  terms of signal detection 
theory  this  boundary  represents a signal, S’(ZO,~O,$~), derived  from 
object 1 when the  object is placed a t  location (zo,y0) with  orienta- 
tion $o. This signal is  transmitted  to  the  camera and forms  part of 
the  image. Any rotation or shift of this  boundary  represents a dif- 
ferent signal S’(z ,y ,$), where z , y, and 4 represent  a  different 
pose from zo ,  yo, and do. The rotations  and  shifts of other boun- 
daries of other  objects  that  can  appear in the image  correspond to 
different signals, S’(z  ,yy4), where i#1.  

Assume that R , shown in Fig. l b ,  represenh  two  boundary 
segments that  have becn extracted  from  an  image.  Treating R as a 
received signal we  seek the  probability  that  it identifies S I (  z o,yo ,$o)  
as the  signal  sent, i.e., Pr [ S’(zo,yO,$o) sent I R recelved 1. 
This  can be determined  from 

Pr [ S’(Z0,Y ado) I R I = 

pr R I ~‘(zO,~o,~o) P r  I s ’ ( z o , ~ o , h )  1 (1) 

pr I R  I 
R can be  produced in many  ways. In particular, R can be produced 
by an  accidental  alignment of segments of different  objects (see Fig. 
2). In this  paper  the possibility of accidental  alignment is ignored, 

then 

where S‘ (z ,y,$), for  all i ,  z, y and 4, represents all the possible 
signals  that can be  sent, Le., all the  boundaries of all the  segments in 
all poses.  Assume that R consists of two  segments of fixed arclength, 
u o .  Call  these r I and r 2  (see  Fig. Ib),  then (1) can  be  rewritten as 

Pr [ S’(Z0,YOdO) I R 1 
Pr [ r1r2 I S*(~O~YO,~O) IPr I ~ ‘ ( ~ o , Y o , d o )  I 
c Pr I r1r2 I S‘(Z fY d l  IPr I S’(Z tY , d )  1 . 

(3) 

I 8Y d 
Assume that all signals  have  equal a priori probability.  Then (3) 
becomes 
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P r  I s ' ( z o , ~ d d  I R I Pr 1 r1r2 I S'(Z,,YOdO) 1 Upon  reception of R , i t  would be possible to estimate  the  the 
pr [ ,. I s ' ( ~  ,y ,4) ] ' (4 )  probability that S ' ( Z ~ , ~ ~ , ~ ~ )  was  sent  during  run-time. However, 

. E  ,Y ,4J given the  large  number of possible  signals, this would take  a signifi- 

Let 8,' represent  a  segment of S'(z ,y ,6) of arclength ao, and let 
(I' (z ,y ,q5) represent  the  set of all  configuration  pairs  (ordered  pairs) 
of segments, < a j , a L > ,  that  can be produced  from S'(z  ,y,$). 
The probability that < a i l  ,a,', > E u ' ( z  ,y,4) is received as  the 
pair of segments < r l r r l >  is the  probability that noise  resulting 
from  sampling  and  quantization  distorts a l l  and si, into r and r 
respectively.  Let 6 be a  metric  which  measures  the  "dist,ance" 
between  configuration  pairs of segments.  We  approximate  the proba- 
bilit,y Pr [ r 1 r 2  I S ' ( z  ,y,4) ] by the  value 1 if there exists a con- 
figuration  pair of segments, < 8 ; ,  > € u ' ( z  ,y,~$),  such that 

cant  amount of computation.  Instead, we adopt  a  simpler  but less 
accurate  approach which  allows the bulk of the  computation  to be 
performed in  an  off-line training  phase. 

In order to eliminate  run-time  calculations  it is necessary to 
eliminate  the  dependence of P r  [ S1(zo,yo,gjo) I R ] on the 
received  signal R . From  our  approximation  the  numerator of (5 )  is 
zero  unless 6( <uj: , a l a  >,<r 1 ,r2>)  < d o .  Terms containing  the 
pair < a i l  , a i ,  > in the  denominator will be zero  unless 

is to  contribute  to  the denominator, the largest  distance  that 
<sil ,8; ,  > can  be  from <a, :  ,ai: > is 2 d 0 .  We will include  only 

6 ( < a f 1 , s / 2 > , < r 1 , r 2 > )  < d o .  Thus, if Pr [ r l  r 2  I a / ,  a i 2  ] 

( 4  (b) 

Figure 1. Signal sent  and  signal received. 

Figure 2. Accidental  alignment. 

. ,  term,s in the  denominator  that  have  configuration  pairs  within 2 d o  of 
6 ( < a l l  > , < r  l , r 2 > )  < do ( d o  is  a fixed  threshold  distance), < a i ,  ,a;% >, and  set  their  values  to 1. This approximation is made, 
and by 0 otherwise.  Further  assume that  the reception of < r 1 , 1 2 >  noting that  its effect is to sometimes  increase  the  value of the 
depends only  on the  configuration  pair < a i l  >. Then (4) denominator  above  the  value  that would  be estimated a t  run-time. 
becomes This simply  lowers the  estimate of the probability to  a more pes- 

simistic  value. In practice  it  has been found to work  well.  With  this 
Pr I r l  r 2  I 6;: 8,: I approximation the  denominator no  longer depends upon R.  Rather  it 

c Pr [ C l C 2  I a l l  a l p  I ' . ( 5 )  depends  upon ai: and e l : ,  which in turn  depend upon zO, yo, and Pr  I S'(z0,Yodo) I R 1 
i # Z  ,Y ,b bo. Denote  this  approximate  denominator by D ,l,, (zo,yo,cjo). 
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With these  approximations D ( 2  o,yo,40) can be calculated 
off-line,  and the  probability Pr [ S ’ ( Z O , ~ O , ~ O )  I f? ] can be 
estimated  during  run-time by 

In acrordance with our  approximation  the  numerator. 
Pr  [ r ,  r I 3f!, 8 , :  1. takes on the  value 1 in (6). 

Since the  calculation of D i2 (z ,y ,4) depends only  upon a rela- 
tive  distance  metric for pairs of objects on the  same  object, 
D (z ,y ,I$) is independent of the pose of the  object.  Therefore, in 
the following, the  notation will reflect this  and D :2 (z ,y ,$) will  be 
shortened  to D 1: . 

The  counting  method of determining D i 2  for  all i is discussed 
in the scction on training. 

This Raycsian approach of estimating  whether  or  not  a signal 
h a s  been sent given the reception of a  pair of segments is used 
together  with  the  matching  approach to h a t e  Partially  hidden 
objects.  Matching  is  discussed in the  next section. 

MATCHING SEGMENTS 

A critical  phase of the  procedure for locating an object in a 
scene of partially hidden objects involves  matching  segments  from 
the  template of the  object to be located to segments in the  image of 
the scene. The approach used  in this work has been discussed  in 
detail in [TMV83]  and  [TMV84],  and  is  summarized  here. 

The  template  and image boundaries  are represented in two 
spaces, in normal  Cartesian space  and in slope  angle-arclength space, 
or 0-a space (see  Fig. 3). The  template  and image boundaries in 
both 0-a space  and Cartesian space  are  partitioned  into  segments of 
fixed arclength oo.  

Matching  is  performed in 8-0 space since it IS more  efficient 
than matching in  Cartesian space.  Rotations in Cartesian space 
become offsets in  0-0 space. 

During matching a #-a representation of the  template  segment 
(shown  with a heavy  line in Fig. 4) is moved  along the u axis so that 
i t s  center is aligned with  the  center of the image  segment  to which it 
is to  be compared. The  template  segment is then  shifted in the 0 
dirertion so that  the mean 0 value of the  template  segment  has  the 
same  mean 8 value as the  image  segment.  This 0 shift (see Fig. 4) 
measures  the  average slope  angle  difference  between the  template 
and  image  segments  and will  be referred to as the  “angle of match.” 
The difference in 0 is found  between corresponding  points of the 

I - v s l e r ~ t h  in pireb 

Figure 3. Cartesian  and #-a representation of an object. 

300 - 4 

270 - 

180 - 

00 - 

0 I I I I 1 
0 65 110 105 m 275 330 

I - uclengtb in pkeb 

Figure 4. Matching in 8-a space. 
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template  and  image  segment.  The  inverse of sum of the  squares of 
these  differences is used to measure  the similarity of the  two seg- 
ments. If they  are  similar, as determined by a  function of the thres- 
bold d o ,  they are  assumed to  match. 

If the  template  and image  segments  match in &a space,  the 
match is recorded as follows.  In  Cartesian  space  a  vector  from the 
center of the  template segment to  the  template centroid  is  deter- 
mined. This vector is is rotated hy the  “angle of match” and 
translated so that  its  tail is centered at  the  same location as the 
center of the  image  segment  (see Fig. sa).  The location of the head 
of this  vector  represents  a  potential location of the centroid of the 

ciated list. If the head of the  vector falls on a  particular pixcl,  a 
template in the image.  Each  pixel  location in the image  has an asso- 

record containing  the  identity of the  template  segment  and  the angle 
of match is stored in the list at  that pixel  location  (see  Fig.  5b). 

of the  next  object,  generating new lists of match  records. These lists 
are again analyzed, possibly  resulting in D t z  being further incre- 
mented. All other  objects  are  matched  and all  possible contributions 
to D :2 are  counted. 

In our  preliminary  implementation  only  configuration  pairs 
with denominators  equal  to 1 were output in  a  table as  part  of  the 
training ph3se. The  table is termed the  training  table  and is indexed 
by the  subscripts of the  configuration  pair.  Entries in the  training 
table  are considered to be the  configuration  pairs  that  can uniquely 
determine  the pose of their  associated  object.  The saliency of each 
segment  can be determined  from  the  table.  It is the  cardinality of 
the coset of each distinct  segment  that  occurs in any of the confi- 
guration  pairs in  the  table. 

Figure  5.  Storing  a  record of the  match. 

TRAINING 

The  denominators  for  the  conditional  probabilities of an  object 
are  trained off-line. The  template of the  object  to be trained is 
matched to templates of all of the  objects  (including  itself)  that  can 
appear in the image. From  this  matching  information  one  can  deter- 
mine  the  denominators of the conditional  probabilities. 

The  object whose  conditional  probabilities are  to be determined 
is termed  the  training  object. As before let D ,?2 denote  the denomi- 
nator  term for the  conditional  probability when <u;: ,u; i  > form 
the  configuration  pair. The calculation  proceeds  as  follows. The seg- 
ments of the  template of the  training  object  are  matched to the seg- 
ments of the  template of one of the  objects.  After  matching, the list 
of records at  each  pixel  location is examined. If the list a t  a  pixel 
location  or the list of any  nearby pixel contains  a record of a match 
by segment 6;: and  a  record of a  match by 6;; a t  approximately 
the  same  angle of match,  then Dl: is incremented by 1. After all 
lists  generated for this  match  have been  examined  they  are  disposed 
of and  the  template of the  training  object is matched to the  template 

LOCATING PARTIALLY  HIDDEN OBJECTS 

When  locating  an  object, for  example  object 1, a  segment, a,:, 
of the  template of the  object is matched to  the segments of the boun- 
daries in the  image using the  approach discussed  previously. The 
most  salient  segments  are  matched  first  according to  the strat.egy 
outlined  in  the  Introduction. When  a template segment of the  object 
matches  a  image  segment,  a record of the  match is stored in a list 
associated  with  a  pixel at  the  location of a  possible  centroid of the 
template.  Then  the list at  that pixel and of all neighboring  pixels are 
examined to see if there  exists  any  previous record of a  match  with 
another  template  segment,  say a;:, a t  the  same  match angle. 

If such  a  record  exits, the  training  table is examined  using jl 
and j 2  as indices to find if this  configuration pair is present. If this 
is the  case  then  object 1 has been  located. 
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RESULTS SUMXL4RY 

Fig. 6 shows the  boundaries of the  set of objects  that were used 
during  training in our experiments.  Fig. 7 shows  an  example of the 
joint  conditional 
Pr [ S'(Zo,yo,&) I , R  = < r 1 , f 2 >  1. The bullet  indicates  the 

probability, 

center of segment JI1 . A vertical  line is drawn  from  each possible 
center of a,', . The length of the line is proportional to  the  joint con- 
ditional  probability P r  [ S1(z,,yo,~o) I R = < r l , r 2 >  ] that 
one  would obtain if 8,: were  centered  about  each of these  possible 
locations. 

Figure 8 illustrates  the recognition of two  objects from a  pile of 
parts.  Preliminary  estimates  indicate subsecond  recognition  times  on 
an  Apollo 660 workstation. 

In this  paper i t  has been  shown that  a Bayesian approach, 
together  with  template  segment  matching  in 8-a space  can  be used 
as  an  effective  approach to locate  partially  hidden  objects. A key 
assumption  was that  the received  pair of segments, <r1,r2> were 
not  an  accidentally  alignment of two  segments  each  from  a  different 
object,  but were  received  from a single  object. In a real  industrial 
scene,  particularly  a bin of parts  situation where  there are many 
copies of the  same  part,  this  assumption is likely to be  violated. In 
these  cases  some  configurations  may  require  more  than  a  pair of seg- 
ments. 

Figure 7.  Joint  conditional  probability 
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